Theoretical Investigations of the Electron Paramagnetic Resonance g Factors for the Trivalent Cerium Ion in LiYF₄ Crystal

Hui-Ning Dong^{a,b} and Shao-Yi Wu^{b,c}

^a College of Electronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China

b International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China

^c Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China

Reprint requests to H.-N. D.; E-mail: donghn@163.com

Z. Naturforsch. **58a**, 507 – 510 (2003); received July 25, 2003

The perturbation equations of the EPR parameters g_{\parallel} and g_{\perp} for the lowest Kramers doublet of a $4f^1$ ion in tetragonal symmetry are established. In these equations, the contributions of the covalency effects, the admixture between J=7/2 and J=5/2 states and the second-order perturbation (which is not considered previously) are included. The crystal field parameters for the studied Ce^{3+} center are calculated from the superposition model. Based on the above perturbation equations and related parameters, the EPR g factors for the Ce^{3+} center in LiYF $_4$ crystals are reasonably explained. The results are discussed.

Key words: Crystal Field Theory; Electron Paramagnetic Resonance; Superposition Model; Ce³⁺; LiYF₄.